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GOAL:

Predict sensitivity of the experiment to the
acceleration environment

• PI must justify need for microgravity

• PI must be able to predict tolerable (and
     intolerable) environments
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PI’s choices (and assignments) affect the
quality of the g environment

• flight mode ( attitude of the carrier with respect to the earth)

• deadband (allowable angular displacement from the desired mode)

• location of experiment relative to CG

• orientation of the experiment w.r.t. Shuttle (or ISS)
body axes

• scheduling of crew activities

• operation of other apparatus or experiments
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Recommendations to minimize g-jitter effects based
on flights of MEPHISTO (directional solidification)

MEPHISTO I: STS-52 1 0 / 9 2

xCG = (27.7, 0, 9.3) m

xMI = (25.5, 1.05, 10.8) m

(a) -ZLV,-XVV at 300 km

MEPHISTO II: STS-62  3 / 9 4

xCG = (27.8, 0, 9.5) m

xMII = (25.5, 1.05, 10.8) m
(b) -ZLV,+YVV at 300 km
(c) +ZLV,+YVV at 260 km
(d) -XLV,-ZVV at 300 km

¥ Use flight modes which do not require Shuttle maneuvers for water dumps,
etc. (e.g., -ZLV,+YVV) for long-duration microgravity (>3 days)

¥ To minimize large accelerations, specify a flight mode requiring fewer
thruster firings to maintain attitude; 2¡ deadband required fewer thruster
firings than 1¡ -- better µg

¥ Experiments should be aligned with ShuttleÕs z body axis for these flight
modes to minimize transient acceleration effects (least transmission of
disturbances along this axis)

- de Groh and Nelson, 1994
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Strategy for assessing experiment
sensitivity to the g environment

(1)  Identify the tolerance criterion

(2)  Correlate acceleration to the tolerance criterion

(3)  Perform “simple” analyses to determine range of
sensitivity

(4)  As necessary, perform a detailed analysis in the
range of sensitivity

(5)  Develop detailed g tolerance specifications
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Tolerance criteria are:
• subjective
• arbitrary (to some extent)
• functions of many parameters

• physics
• experiment goal
• composition of system (thermophysical properties, etc.)
• geometry of system (aspect ratio, length of test section, etc.)
• applied boundary conditions (applied thermal or pressure field,
velocity of boundaries, etc.)

A good tolerance criterion is a function both of the
specific experiment design and the specific

environment in which it is placed
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Two examples

• directional solidification:  buoyancy-driven flow of a
passive scalar field (natural convection)

• goal is to suppress convection to maximize homogeneity of the
crystal (diffusion-controlled growth)
• highly sensitive to residual acceleration (orientation, magnitude,
frequency)
• requires very long duration microgravity (hours to days)
• lots of previous studies, including space experiments

• granular flow:  segregation of a binary mixture of particles
in a collision-dominated flow

• uses kinetic theory of gases as analog to grain fluctuation energy, T
• relatively insensitive to residual acceleration
• relatively short-duration microgravity (minutes)
• no similar previous investigations
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Bridgman growth of semiconductor crystals

Tolerance criterion:
1% variation in

solute concentration
at solid/liquid
interface (for

example)

bulk
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First, develop the
tolerance criterion in terms

that are physically
meaningful w.r.t. the

experiment
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Microgravity segregation of energetic grains
(µgseg)

- Jenkins and Louge,
1998

Tolerance criterion: g-jitter can contribute
up to 5% variation in mean granular
temperature, T, across test section

Test section
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• All experiments will have some dependence on acceleration
magnitude, frequency, orientation, and duration

• Experimental system response varies enormously, e.g.,:

• may be very sensitive to specific frequencies, orientations, etc. esp.
for interfaces, critical point experiments

• require examination of overall momentum input, esp. for bulk flows

• may need long recovery times for short disturbances, esp. for flows
with large Schmidt or Prandtl number

Key: what drives the sensitivity?
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Analysis tools include:

¥ theoretical analysis
¥ order-of-magnitude analysis

¥ exact solution of a simplified problem

¥ numerical simulation
¥ traditional FD/FE/FV approach

¥ direct numerical simulation

¥ stochastic approach

¥ experimental testing (ground-based)
¥ ground-based facilities, e.g., KC-135, drop tower

¥ vibrating platforms

¥ centrifuge

F D: Finite Difference
F E: Finite Element
F V: Finite Volume
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Develop a model of experiment response to
acceleration input

Q: Does the system exhibit linear
response to acceleration input?

θ

t θ

t

θ

t

For convenience (or by
necessity), we may study

components of g separately

t
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g~

t
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Develop a model of experiment response to acceleration input (contÕd)

- Arnold et al., 1991

Effect of g orientation on directional solidification

θ

tt

g~
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liquid bridges

Develop a model of experiment response to acceleration input ( c o n t Õ d)

natural convection
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Develop a model of experiment response to acceleration input (contÕd)

granular shear flows
- Jenkins and Louge, 1998

Mean granular
temperature as a

function of acceleration
frequency and

amplitude
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Average zero g ≠ zero effect on
experiment necessarily

t

g~

td
Net acceleration=0, but  system reacts in a transient manner with finite

response time

⇒  Net system response may be nonzero

Develop a model of experiment response to acceleration input (contÕd)
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- Monti et al., 1990

td1< td2< td3< td4
V

g
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T
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Effect of time delay on velocity and
temperature in natural convection in

enclosures

Develop a model of experiment response to acceleration input (contÕd)
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Develop a model of experiment response to acceleration input (cont’d)

But eventually, we must consider the actual acceleration
environment for the carrier of interest, e.g.:

• International Space Station

• sounding rocket

• Space Shuttle

• free flyer

• low-g aircraft, e.g., KC-135

• Mir



12/09/99

Predicting µg effects on space experiments

MEIT-99 / Section 15 / Page 19

Develop a model of experiment response to acceleration input (contÕd)
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To describe the actual environment for numerical or
theoretical analysis:

¥ use actual acceleration data at or near location of
experiment

¥ construct g in the time domain using predicted spectral
data, e.g., from ISS predictions, simplified data spectrum

¥ examine predicted or actual data in spectral domain
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Initial transient in natural convection in enclosures:
Startup of multifrequency sinusoidal disturbance

- Alexander et al., 1991

(Concentration variation at solid/liquid interface as a function of time
using a simplified spectrum of the Shuttle acceleration environment)

Develop a model of experiment response to acceleration input (contÕd)
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t
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ISS design
requirement

no isolation

ARIS vibration
isolation
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- Demel, 1986

Tolerability limits for buoyancy-driven flows in
enclosures

t
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- Jenkins and Louge, 1998

CONCLUSION:  suitable environment can be found
on ISS

ISS design
requirement

no isolation

ARIS vibration
isolation

tolerability limit for
most sensitive
parameters

Effect of single-frequency g-jitter on T in
granular shear flow
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Sensitivity of directional solidification to
quasisteady g orientation

Arnold et al., 1991

Be aware that
any inhabited

spacelab is likely
to be extremely
variable in θ due

to the rich
variety of

acceleration
sources!

NOTE:  For other
experiments, this tendency
towards improved mixing

may actually be beneficial!
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Q:  Is vibration isolation necessary?

ISS design
requirement

no isolation

ARIS vibration
isolation
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- Nelson and Kassemi, 1997

ARIS vibration isolation

Effect of vibration isolation on directional
solidification
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Use this data to create g(t):

No vibration isolation Idealized ISS environment:

¥ constructed from DAC-3 (Design
Analysis Cycle #3)

¥ used a frequency range from 0.01 to 14
Hz for several hours of simulated µg

¥ neglected effects of robot arm (big peak
at 0.1 Hz), but included treadmill and
other facility operations
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Effect of vibration isolation on directional solidification (cont’d)

Nelson and Kassemi, 1997
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Effect of vibration isolation on directional solidification (cont’d)

Nelson and Kassemi, 1997
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Q:  Is vibration isolation necessary for
this case?

A:  Yer darn tootin’!

Effect of vibration isolation on directional solidification (cont’d)
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• Specify duration of experimental runs
•  typical length

•  anticipated maximum/minimum length

•  expected number of runs per 30-day microgravity period

• Describe the quasisteady acceleration limits
•  upper bound of QS magnitude (expect several µg on ISS)

•  desired orientation (if choices are available); angular
tolerance about that orientation (e.g., align experiment with
torque equilibrium attitude (TEA) of ISS with a tolerance of
± 0.05 .  Maintain QS g orientation to within TEA ± 10
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• Identify oscillatory acceleration limits
•  specific frequencies at particular magnitudes of concern
•  frequency cutoff (frequencies above or below the cutoff are of no

concern)
•  thumbs up/down for specific environments, e.g.,

• acceleration data from Shuttle, sounding rocket,  KC-135, ISS...
• predicted ISS environment, e.g., from DAC-xx for a specific

configuration and disturbance environment:
• unisolated rack
• ARIS vibration isolation
• passive vibration isolation
• MIM, g-LIMIT, or other active sub-rack isolation unit

• Describe transient acceleration limits
•  thumbs up/down for identified transients (based on thruster firings,

impulsive crew activity, etc., e.g., 100 µg for up to 2 sec);
• specify integrated acceleration input subject to limits (e.g., 300 µg

sec with magnitude ≤ 150 µ
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Recap:

Prediction of experiment sensitivity to the
g environment through modeling

• Identify the tolerance criterion

• Correlate acceleration to the tolerance criterion

• Perform “simple” analyses to determine range of
sensitivity

• As necessary, perform detailed analysis in the range
of sensitivity

• Develop detailed g tolerance specs
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